
Tutorial Note X

Exercise 0.1

1. Calculate the Fourier coefficients of 1[0,1] on [−1, 1].

2. Calculate the Fourier coefficients of |x| on [−1, 1].

3. Calculate
∑∞

n=1 1/n
2.

Proof.

1. If n ̸= 0,

f̂(n) =
1

2

∫ 1

−1

1[0,1](x)e
−inπx dx

=
1

2

∫ 1

0

e−inπx dx

=
1− (−1)n

2inπ
.

If n = 0,

f̂(0) =
1

2

∫ 1

−1

1[0,1](x) dx

=
1

2
.

2. If n ̸= 0,

f̂(n) =
1

2

∫ 1

−1

|x|e−inπx dx

=
1

2

(∫ 1

0

xe−inπx dx+

∫ 0

−1

(−x)e−inπx dx

)
=

1

2

(∫ 1

0

xe−inπx dx+

∫ 1

0

xeinπx dx

)
=

∫ 1

0

x cosnπx dx

= −
∫ 1

0

sinnπx

nπ
dx

=
(−1)n − 1

n2π2
.
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If n = 0,

f̂(0) =

∫ 1

0

x cos 0πx dx

=
1

2
.

3. By 2,

|x| = 1

2
+
∑
n̸=0

(−1)n − 1

n2π2
einπx.

Since |x| is Lipschitz continuous, this equality holds. Letting x = 0, we have

0 =
1

2
− 2

∑
n∈2Z+1

1

n2π2
.

So ∑
n∈2Z+1

1

n2
=

π2

4
.

Since
∞∑
n=1

1

n2
=

∑
n∈2Z∩N+

1

n2
+

∑
n∈2Z+1∩N+

1

n2

=
1

4

∞∑
n=1

1

n2
+

π2

8
,

we have
∞∑
n=1

1

n2
=

π2

6
.

Alternatively, we could use 1 and the Parseval identity to calculate
∑∞

n=1 1/n
2. In fact,∫ 1

−1

12[0,1] =

(
1√
2

)2

+
∑

n∈2Z+1

(√
2

nπ

)2

,

yielding that ∑
n∈2Z+1

1

n2
=

π2

4
.

□

Remark 0.1

There are a lot of methods to solve the Basel problem
∑∞

n=1 1/n
2, except Fourier series, such

as generating functions, residues, and the Poisson summation formula. Here if we start with

the Basel problem, how to find the function to calculate Fourier coefficients? In fact, there are

not only one function available. For example, if we want to use the Parseval identity, we need

to calculate (1/n)∨. By the formula

f̂ ′(n) = inπf̂(n),
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and

δ(0)̂= 1

2
,

a candidate is the above 1[0,1] that is an integral of δ(0). In fact, 1[0,1] is not a genuine antideriva-

tive of δ(0), and 1′[0,1] = δ(0)− δ(1).

Exercise 0.2

Derive Poisson’s formula for the Dirichlet problem of the Laplace equation on the disk of R2

by Fourier series.

Proof. For the Dirichlet problem: ∆u = 0 in D;

u = f on ∂D,

we use the method of separation of variables to solve it. First we find special solutions with

the form R(r)Θ(θ). By the polar coordinate expression of the Laplacian, we have

R′′Θ+
1

r
R′Θ+

1

r2
RΘ′′ = 0.

So
r2R′′ + rR′

R
= −Θ′′

Θ
= λ.

Θ satisfies the periodic condition Θ(0) = Θ(2π). Thus,

Θn(θ) = einθ,

where n ∈ Z, and

Rn(r) = r±|n|.

We choose Rn(r) = r|n| to avoid the singularity at the origin. Now if we use Fourier series to

write f(θ) as ∑
n

f̂(n)einθ,

then

u(r, θ) =
∑
n

r|n|f̂(n)einθ

is a candidate of the solution to the Dirichlet problem. Next we simplify the u.

u(r, θ) =
1

2π

∑
n

r|n|
∫ 2π

0

f(φ)e−inφ dφeinθ

=
1

2π

∫ 2π

0

∑
n

r|n|f(φ)ein(θ−φ) dφ

=
1

2π

∫ 2π

0

f(φ)

(
1 +

rei(θ−φ)

1− rei(θ−φ)
++

re−i(θ−φ)

1− re−i(θ−φ)

)
dφ
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=
1

2π

∫ 2π

0

f(φ)
1− r2

1− 2r cos(θ − φ) + r2
dφ.

Now we obtain Poisson’s formula. □
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